Logarithm Calculator

Enter values
Last update: 2024-06-18
0/0
Result:
2.7080502011023
Solution steps
1.
Calculate the logarithm of the base. Variable logBase
1.
x = base - 1 base + 1
x = (2.718281828459 - 1) ÷ (2.718281828459 + 1)
1.
(2.718281828459 - 1) ÷ (2.718281828459 + 1)
2.718281828459 - 1
= 1.718281828459
2.
1.718281828459 ÷ (2.718281828459 + 1)
2.718281828459 + 1
= 3.718281828459
3.
1.718281828459 ÷ 3.718281828459
1.718281828459 ÷ 3.718281828459
= 0.46211715726
= 0.46211715726
2.
Use Taylor series: f ( x ) = n = 0 ( f ( n ) ( a ) n! ) ( x - a ) n
Where:
Function: f ( x , i ) = x i × 2 - 1 i × 2 - 1
x: 0.46211715726
i: Iteration number 1, 2, 3, ..., n
Initial result: 0
Initial term: 0
1.
Term = 0.46211715726^(1 × 2 - 1) ÷ (1 × 2 - 1) = 0.46211715726
Result = 0 + 0.46211715726 = 0.46211715726
= 0.46211715726
2.
Term = 0.46211715726^(2 × 2 - 1) ÷ (2 × 2 - 1) = 0.03289538885607
Result = 0.46211715726 + 0.03289538885607 = 0.49501254611607
= 0.49501254611607
3.
Term = 0.46211715726^(3 × 2 - 1) ÷ (3 × 2 - 1) = 0.0042149309191085
Result = 0.49501254611607 + 0.0042149309191085 = 0.49922747703518
= 0.49922747703518
4.
...
5.
Relative change: 8.8817841970015E-16 < Dynamic Epsilon: 1.0E-15 = Stopping calculations
= 0.49999999999999
6.
Iterations: 21
= 0.49999999999999
2.
Calculate the logarithm of the x. Variable logX
1.
x = x - 1 x + 1
x = (15 - 1) ÷ (15 + 1)
1.
(15 - 1) ÷ (15 + 1)
15 - 1
= 14
2.
14 ÷ (15 + 1)
15 + 1
= 16
3.
14 ÷ 16
14 ÷ 16
= 0.875
= 0.875
2.
Use Taylor series: f ( x ) = n = 0 ( f ( n ) ( a ) n! ) ( x - a ) n
Where:
Function: f ( x , i ) = x i × 2 - 1 i × 2 - 1
x: 0.875
i: Iteration number 1, 2, 3, ..., n
Initial result: 0
Initial term: 0
1.
Term = 0.875^(1 × 2 - 1) ÷ (1 × 2 - 1) = 0.875
Result = 0 + 0.875 = 0.875
= 0.875
2.
Term = 0.875^(2 × 2 - 1) ÷ (2 × 2 - 1) = 0.22330729166667
Result = 0.875 + 0.22330729166667 = 1.0983072916667
= 1.0983072916667
3.
Term = 0.875^(3 × 2 - 1) ÷ (3 × 2 - 1) = 0.10258178710938
Result = 1.0983072916667 + 0.10258178710938 = 1.200889078776
= 1.200889078776
4.
...
5.
Relative change: 0 < Dynamic Epsilon: 1.0E-16 = Stopping calculations
= 1.3540251005511
6.
Iterations: 118+
= 1.3540251005511
3.
log e ( 3 ) = logX logBase
1.3540251005511 ÷ 0.49999999999999
= 2.7080502011023
Rating: 0
Votes: 0