Exponent Calculator

Enter values
Last update: 2024-06-18
5/1
Result:
2.2133638394007
Solution steps
1.
Initial approximation:
Result: 1
Term: 1
2.
Calculating the logarithm log ( base )
log(24)
= 3.178053830348
3.
Multiply the exponent by the logarithm
0.25 × 3.178053830348
= 0.79451345758701
4.
Use Taylor series: f ( x ) = n = 0 ( f ( n ) ( a ) n! ) ( x - a ) n
1.
Term = 0.79451345758701^(0 × 2 - 1) ÷ (0 × 2 - 1) = 0.79451345758701
Result = 1 + 0.79451345758701 = 1.794513457587
= 1.794513457587
2.
Term = 0.79451345758701^(1 × 2 - 1) ÷ (1 × 2 - 1) = 0.31562581714343
Result = 1 + 0.31562581714343 = 2.1101392747304
= 2.1101392747304
3.
Term = 0.79451345758701^(2 × 2 - 1) ÷ (2 × 2 - 1) = 0.083589653094117
Result = 1 + 0.083589653094117 = 2.1937289278246
= 2.1937289278246
4.
...
5.
Term = 0.79451345758701^(16 × 2 - 1) ÷ (16 × 2 - 1) = 5.6318731788114E-17
Result = 1 + 5.6318731788114E-17 = 2.2133638394007
= 2.2133638394007
6.
Iterations: 17
= 2.2133638394007
Rating: 5
Votes: 1